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For over a decade, large cancer-related datasets (big data) have continuously been
produced and made publicly available to the scientific community. A current challenge
is how the accumulating big data from several layers of biological organization, such as
molecules, cells, tissues, and whole organs, can eventually be translated into optimized
strategies for cancer management. These datasets are too large or complex to be dealt with
by traditional data-processing application software and safely produce a meaningful and
applicable conclusion. In this Editorial, we highlight the perspectives of combining medical
imaging with transcriptional data and artificial intelligence methods for the prediction of
response to therapy and the personalization of patient treatment.

Medical imaging represents a fundamental and well-established oncological examina-
tion. Radiologic modalities, such as computed tomography (CT), magnetic resonance imag-
ing (MRI), positron emission tomography–computed tomography (PET/CT), or PET/MRI,
are widely used in clinical practice to acquire spatial information on the lesion and sur-
rounding tissues, assess tumor grade, and monitor a patient’s response to therapeutic
regimens in a non-invasive manner. Intriguingly, beyond the typical medical image analy-
sis and visual interpretation, the generated pictures contain details that are not perceived
by the naked eye but can be highly informative for patient management. To extract a
large number of undiscovered features from routinely acquired imaging data that cannot
be captured by conventional means, a promising artificial intelligence-driven method,
termed radiomics, has emerged at the interface of radiology and oncology. According to
the concept of radiomics, images are more than pictures, they are data. Standing on the
shoulders of computational science, radiomics approaches use algorithms that convert im-
ages to high-throughput, quantitative, and mineable data. The quantified spatial features of
tumors are subsequently combined with the clinicopathological characteristics of patients
and processed by sophisticated bioinformatics tools to develop models that aim to improve
diagnostic, prognostic, and predictive accuracy. In this regard, the plethora of radiology
images that are stored in the clinic archives represents a ‘goldmine’, whereby pictures can
be revisited to generate clinical aids for the improvement of medical decisions [1].

The potential of radiomics for early tumor detection, prediction of patient survival,
and/or assessment of response to various therapeutic modalities is collectively highlighted
by an increasing number of studies. For example, Mahmood and colleagues recently com-
bined radiomics with machine learning for detecting and classifying microcalcifications,
i.e., indicators of potential carcinomas, in mammogram images. This approach showed
superiority as compared to conventional diagnostic methods, thereby putting forth a tool
that may aid radiologists for early breast cancer detection in regular clinical practice set-
tings [2]. Moreover, a team led by Dr. Kontos at the University of Pennsylvania extracted
and analyzed retrospectively the radiomic phenotypes from 110 CTs of lung adenocar-
cinoma patients and showed that integration with clinical data significantly improved
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the prediction of overall survival in stage III non-small-cell lung cancer (NSCLC) after
chemoradiation [3]. Interestingly, the same group demonstrated that the readers’ level of
training and clinical experience (e.g., data scientist, medical student, radiology trainee, or
specialty-trained radiologist) does not influence the ability to extract accurate radiomic
features for NSCLC on CT, suggesting that the method is user-friendly and can be reli-
ably applied by a variety of health care professionals [4]. On a similar note, in a study
published in Cancers on March 2022, the authors used prospectively collected longitudinal
data from FDG-PET (positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-
D-glucose), CT, and perfusion SPECT (single-photon emission computed tomography)
images of NSCLC patients to investigate whether the multitask learning of multi-time point
radiomic features can be used for improving survival outcome prediction. The method
was compared to single-task learning and conventional clinical imaging feature model
benchmarks. Multitask learning achieved higher survival prediction concordance com-
pared with other modalities and models on pretreatment and mid-treatment FDG-PET
images [5]. Intriguingly, an artificial intelligence-driven analysis of CT images of lesions
from 203 patients with advanced melanoma and NSCLC undergoing checkpoint inhibition
(anti-PD1) therapy showed that radiomic features may function as predictive biomarkers
of response to immunotherapy with a potential to improve patient stratification [6]. In
that sense, radiomic features were recently proposed as promising endpoints for clinical
trials [7].

Nevertheless, we should keep in mind that tumors are heterogeneous structures,
surrounded by a contexture of cellular (such as red blood cells, immune cells, fibroblasts,
lipocytes) and acellular components (extracellular matrix, secreted signaling molecules),
which are collectively described as the tumor microenvironment (TME). According to
current notions, a neoplasm consists of highly versatile subpopulations of cells carry-
ing genetic and epigenetic alterations, which arise constantly due to genomic instability.
The cellular subpopulations express diversified transcriptional programs and eventually
expand or contract in the neoplasm, in response to changes in their TME. Cell variants
acquiring capabilities that offer selective advantages under specific microenvironmental
changes have increased fitness and, thus, can adapt quickly to new conditions and evade
therapeutic targeting [8]. Conversely, the TME can edit cancer cellular heterogeneity, and
tumors that evolve under stronger immune pressure lose more immunogenic neoantigens,
hence becoming less visible to the immune system [9]. In general, cancer progression is
perceived as a highly dynamic and complex process, which follows Darwinian laws, and
is shaped by combinations of phenotypic features acquired by the cancer cells and their
interactions with the host microenvironment and immune system [8]. Tumor heterogene-
ity is a recognized intrinsic barrier to the efficacy of several cancer therapies, including
next-generation immunotherapeutics, where acquired resistance is often manifested as
antigen escape and immunosuppression [10]. To shed more light on the interplay of diverse
tumor cell subpopulations with changing TME, high-throughput profiling platforms, such
as transcriptomics, proteomics, and multispectral imaging flow cytometry, are increasingly
being recruited. The advent of RNA sequencing (RNAseq) technology has enabled the
comprehensive profiling of cellular heterogeneity, providing a basis for a deeper under-
standing of tumor–TME interplay. For example, single-cell RNAseq was recently used to
map the cell type-specific transcriptome landscape of tumors and their microenvironment
by analyzing tissue biopsies from advanced NSCLC patients [10]. Such studies can offer
invaluable insights into cancer–TME crosstalk and its impact on therapeutic response.

In light of the aforementioned notions, it is reasonable to envisage that the molecu-
lar and cellular heterogeneity of tumors and their surrounding microenvironment may
be, to an extent, imprinted in the radiological images in the form of patchiness not per-
ceived by the human eye. Subtle visual inconsistencies in a 3D image of a lesion could
possibly indicate sites of underlying molecular plasticity and/or tumor–TME interactions,
which may fuel the tumor evolutionary trajectories toward disease progression and re-
sistance to therapy. To this end, the integration of radiomic features with transcriptomic
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profiles theoretically provides a means to capture in situ the dynamic interplay of the
tumor cell populations and the TME relative to space and time. The concept of ‘radiotran-
scriptomics’ was first introduced by Catrib and colleagues at the University of California
Los Angeles (UCLA) to describe the synergy of imaging and transcriptomics in clinical
assessment [11]. Unexpectedly, the COVID-19 pandemic crisis provided a fertile ground
for international researchers to team up and develop, for the first time, a comprehensive
artificial intelligence-driven radiotranscriptomics pipeline. In particular, in a prospective
study led by Dr. Antoniades, ORFAN (Oxford Risk Factors and Non-Invasive Imaging
Study) investigators in collaboration with the COMBAT consortium extracted radiomic
features from routine CT angiograms and subsequently used machine learning to train the
imaging data against arteries transcriptomic profiles, obtained via the RNA sequencing of
respective biopsies. They subsequently developed a platform that not only predicts throm-
bosis and the likelihood of death in COVID-19 patients but also enables the identification
of patients who are likely to respond well to dexamethasone [12]. This ‘pandemic heritage’
can be used as a springboard to design analogous radiotranscriptomics pipelines in the
oncology setting.

Radiotranscriptomics have thus emerged as a potentially powerful new strategy for
the development of non-invasive imaging biomarkers and the support of clinical decisions.
The field is still in its infancy, offering both unprecedented opportunities and method-
ological challenges in the design of multidisciplinary workflows for the construction of
accurate predictive models. The amount of meaningful information obtained depends
on multiple factors, such as the ability of the medical imaging devices to generate high-
resolution pictures, the performance of the transcriptomics platforms, and the robustness of
the artificial intelligence methods. First of all, one consideration would be to discriminate
image background noise from visual irregularities that may represent clinically relevant
details. For example, the fast acquisition of MRI images may reduce the resolution of
images, thereby jeopardizing the quality of the extracted radiomic features. Advanta-
geously, new scanning devices include deep-learning (DL) solutions to save acquisition
time. These built-in DL algorithms were recently shown to be able to reconstruct such
low-resolution and noised MRI images into high-quality images, where radiomic features
are restored [13]. Second, sophisticated algorithms are required for combining radiomic
with molecular features to allow for the in situ identification of tumor–TME interactions on
radiological images. Advantageously, a toolkit of computational methods that, in principle,
combine spatial with molecular information to assign cell types with distinct RNA readouts
to their locations in histological sections has already been developed in the context of
spatial transcriptomics [14], providing a basis for extrapolation of these algorithms in the
radiotranscriptomics field. It is of note that while a few studies have linked radiomic
features with transcriptomics of bulk tumors [15,16], to date, no approach has specifically
utilized transcriptomic data from individual cells/cell subpopulations, which would more
accurately reflect the heterogeneity of the tumor and its microenvironment. Therefore, it is
worthwhile to develop relevant workflows that include single-cell or single-nuclei RNAseq
data of tumor biopsies. Software technology that is designed to simultaneously identify
and track persons in a crowd [17] and/or tag individuals in large groups of animals [18]
could perhaps be repurposed to trace several important cell types (e.g., activated T-cell
populations) in a radiological image based on their specific molecular profiles. Such an
approach would catalyze the detailed mapping of the interactions of tumors with TME
that could be manipulated toward inducing durable responses to therapy. Future ad-
vancements in imaging technologies and RNAseq platforms, as well as in silico methods,
may facilitate overlaying ‘-omics’ data from divergent levels of biological organization
for the construction of cutting-edge models with high clinical and translational value for
patient care.
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6. Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.M.; Delli Pizzi, A.; Lalezari, F.; Lambregts, D.M.J.; Rohaan, M.W.;
Parmar, C.; et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 2019, 30,
998–1004. [CrossRef] [PubMed]

7. Funingana, I.G.; Piyatissa, P.; Reinius, M.; McCague, C.; Basu, B.; Sala, E. Radiomic and Volumetric Measurements as Clinical
Trial Endpoints—A Comprehensive Review. Cancers 2022, 14, 5076. [CrossRef] [PubMed]

8. Logotheti, S.; Pavlopoulou, A.; Marquardt, S.; Takan, I.; Georgakilas, A.G.; Stiewe, T. p73 isoforms meet evolution of metastasis.
Cancer Metastasis Rev. 2022, 41, 853–869. [CrossRef] [PubMed]

9. Łuksza, M.; Sethna, Z.M.; Rojas, L.A.; Lihm, J.; Bravi, B.; Elhanati, Y.; Soares, K.; Amisaki, M.; Dobrin, A.; Hoyos, D.; et al.
Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 2022, 606, 389–395. [CrossRef] [PubMed]

10. El-Sayes, N.; Vito, A.; Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 2021, 13,
806. [CrossRef] [PubMed]

11. Katrib, A.; Hsu, W.; Bui, A.; Xing, Y. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical
assessment. Quant. Biol. 2016, 4, 1–12. [CrossRef] [PubMed]

12. Kotanidis, C.P.; Xie, C.; Alexander, D.; Rodrigues, J.C.L.; Burnham, K.; Mentzer, A.; O’Connor, D.; Knight, J.; Siddique, M.;
Lockstone, H.; et al. Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT
angiograms: A prospective outcomes validation study in COVID-19. Lancet Digit. Health 2022, 4, e705–e716. [CrossRef] [PubMed]

13. Moummad, I.; Jaudet, C.; Lechervy, A.; Valable, S.; Raboutet, C.; Soilihi, Z.; Thariat, J.; Falzone, N.; Lacroix, J.; Batalla, A.; et al.
The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI. Cancers 2021, 14, 36.
[CrossRef] [PubMed]

14. Nerurkar, S.N.; Goh, D.; Cheung, C.C.L.; Nga, P.Q.Y.; Lim, J.C.T.; Yeong, J.P.S. Transcriptional Spatial Profiling of Cancer Tissues
in the Era of Immunotherapy: The Potential and Promise. Cancers 2020, 12, 2572. [CrossRef] [PubMed]

15. Fan, L.; Cao, Q.; Ding, X.; Gao, D.; Yang, Q.; Li, B. Radiotranscriptomics signature-based predictive nomograms for radiotherapy
response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels.
Cancer Med. 2020, 9, 5065–5074. [CrossRef] [PubMed]

16. Trivizakis, E.; Souglakos, J.; Karantanas, A.; Marias, K. Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for
Assessing Molecular and Histology Subtypes with a Data-Driven Analysis. Diagnostics 2021, 11, 2383. [CrossRef] [PubMed]

17. Dehghan, A.; Shah, M. Binary Quadratic Programing for Online Tracking of Hundreds of People in Extremely Crowded Scenes.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 568–581. [CrossRef] [PubMed]

18. Romero-Ferrero, F.; Bergomi, M.G.; Hinz, R.C.; Heras, F.J.H.; de Polavieja, G.G. idtracker.ai: Tracking all individuals in small or
large collectives of unmarked animals. Nat. Methods 2019, 16, 179–182. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://doi.org/10.3390/cancers13235916
http://www.ncbi.nlm.nih.gov/pubmed/34885026
http://doi.org/10.3390/cancers14030700
http://www.ncbi.nlm.nih.gov/pubmed/35158971
http://doi.org/10.3390/cancers13235985
http://www.ncbi.nlm.nih.gov/pubmed/34885094
http://doi.org/10.3390/cancers14051228
http://www.ncbi.nlm.nih.gov/pubmed/35267535
http://doi.org/10.1093/annonc/mdz108
http://www.ncbi.nlm.nih.gov/pubmed/30895304
http://doi.org/10.3390/cancers14205076
http://www.ncbi.nlm.nih.gov/pubmed/36291865
http://doi.org/10.1007/s10555-022-10057-z
http://www.ncbi.nlm.nih.gov/pubmed/35948758
http://doi.org/10.1038/s41586-022-04735-9
http://www.ncbi.nlm.nih.gov/pubmed/35589842
http://doi.org/10.3390/cancers13040806
http://www.ncbi.nlm.nih.gov/pubmed/33671881
http://doi.org/10.1007/s40484-016-0061-6
http://www.ncbi.nlm.nih.gov/pubmed/28529815
http://doi.org/10.1016/S2589-7500(22)00132-7
http://www.ncbi.nlm.nih.gov/pubmed/36038496
http://doi.org/10.3390/cancers14010036
http://www.ncbi.nlm.nih.gov/pubmed/35008198
http://doi.org/10.3390/cancers12092572
http://www.ncbi.nlm.nih.gov/pubmed/32917035
http://doi.org/10.1002/cam4.3115
http://www.ncbi.nlm.nih.gov/pubmed/32458566
http://doi.org/10.3390/diagnostics11122383
http://www.ncbi.nlm.nih.gov/pubmed/34943617
http://doi.org/10.1109/TPAMI.2017.2687462
http://www.ncbi.nlm.nih.gov/pubmed/28358675
http://doi.org/10.1038/s41592-018-0295-5
http://www.ncbi.nlm.nih.gov/pubmed/30643215

	References

